Efficient Output Kernel Learning for Multiple Tasks
نویسندگان
چکیده
The paradigm of multi-task learning is that one can achieve better generalization by learning tasks jointly and thus exploiting the similarity between the tasks rather than learning them independently of each other. While previously the relationship between tasks had to be user-defined in the form of an output kernel, recent approaches jointly learn the tasks and the output kernel. As the output kernel is a positive semidefinite matrix, the resulting optimization problems are not scalable in the number of tasks as an eigendecomposition is required in each step. Using the theory of positive semidefinite kernels we show in this paper that for a certain class of regularizers on the output kernel, the constraint of being positive semidefinite can be dropped as it is automatically satisfied for the relaxed problem. This leads to an unconstrained dual problem which can be solved efficiently. Experiments on several multi-task and multi-class data sets illustrate the efficacy of our approach in terms of computational efficiency as well as generalization performance.
منابع مشابه
Multitask Learning Using Regularized Multiple Kernel Learning
Empirical success of kernel-based learning algorithms is very much dependent on the kernel function used. Instead of using a single fixed kernel function, multiple kernel learning (MKL) algorithms learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem. We study multitask learning (MTL) problems and formulate a novel M...
متن کاملThe Effects of Task Orientation and Involvement Load on Learning Collocations
This study examined the effects of input-oriented and output-oriented tasks with different involvement load indices on Iranian EFL learners' comprehension and production of lexical collocations. To achieve this purpose, a sample of 180 intermediate-level EFL learners (both male and female) participated in the study. The participants were in six experimental groups. Each of the groups was random...
متن کاملThe Effects of Collaborative and Individual Output Tasks on Learning English Collocations
One of the most problematic areas in foreign language learning is collocation. It is often seen as arbitrary and an overwhelming obstacle to the achievement of nativelike fluency. Current second language (L2) instruction research has encouraged the use of collaborative output tasks in L2 classrooms. This study examined the effects of two types of output tasks (editing and cloze) on the learni...
متن کاملLearning output kernels for multi-task problems
Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel lea...
متن کاملThe Effect of Task Type and Task Orientation on L2 Vocabulary Learning
This study was conducted to investigate the effect of meaning-focused versus form-focused input-oriented and output-oriented task-based instruction on elementary level Iranian EFL Learners’ vocabulary comprehension and recall. For this purpose, a sample of 120 male students from a private school in Tehran was selected through convenience sampling and based on availability. The participants were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015